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Article History The aviation industries in Europe and the US have been well-
established since a very early age and have attracted great attention 
from both industry practitioners and academics. To derive a 
different perspective on the efficiency levels of airlines operating in 
the two matured markets, we adopted dynamic data envelopment 
analysis (DEA). Using the data of the period 2014 – 2016 of 7 
European airlines and 9 US airlines that are publicly traded, the study 
offers an overall picture of airlines' efficiency in the two regions. 
Notably, the resource flow between the consecutive periods is 
incorporated into the measure to yield a longitudinal perspective on 
airlines' efficiency. The study reveals the two major findings. First, 
most publicly traded airlines in Europe and the US are efficient, 
except for Hawaiian airline headquartered in the US. Second, 
Hawaiian airline's inefficiency is majorly contributed by the overuse 
of the number of employees, consumed fuel, and the deficit of 
revenue seat-miles in 2014 and 2015. To improve the efficiency 
level, Hawaiian airlines could consider increasing employee 
productivity, using more fuel-efficient aircraft, and implementing 
new marketing strategies to boost sales.  
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Introduction 
In an intensely competitive environment, being efficient has become a major requisition for any business (Liu 
et al., 2018). Particularly, for the airline industry, which is referred to as a capital-intensive business, efficiency 
has been of paramount concern to the operators. Understanding the airline's efficiency level benefits airline 
managers in devising strategies to improve or maintain the company's overall performance, thus strengthening 
their position on the market.  

In response to the need for efficiency measures, there have been several proposed measures. In general, these 
measures can be majorly categorized into two approaches, namely, non-parametric and parametric. Compared 
to the parametric approach, the non-parametric approach, which is represented by data envelopment analysis 
(DEA) has gained greater attention from academics and industry practitioners (Emrouznejad and Yang, 2018). 
The popularity of DEA as a powerful tool for assessing efficiency can be explained by its ability to handle 
multiple inputs and outputs and no presumption of production form (Lampe and Hilgers, 2015). Given the 
superiority of DEA over other methods, it has been widely applied in analyzing the efficiency of the aviation 
sector (for instance, see comprehensive literature review of Yu et al., 2017; Arjomandi et al., 2018; Cui et al., 
2016; Kottasa and Madas, 2018). 

The airline industries in Europe and the U.S have been well-established, and underwent different stages of 
deregulation. The U.S airline industry was first deregulated in 1978. Meanwhile, the European airline industry 
experienced three phases of slower liberalization initiated in 1987, 1990, and 1993. The differences in the degree 
of air transport liberalization in these two markets have led to a proliferation of studies comparing the efficiency 
of airlines in these two regions (Morrell and Taneja, 1979; Good et al., 1993, 1995; Assaf and Josiassen, 2012). 
Due to the earlier deregulation, the airlines in the U.S seemed to be more efficient than the airlines in Europe 
(Good et al., 1993, 1995). 

In this study, we reinvestigated the efficiency of airlines in Europe and the US. Differing from the prior studies, 
we adopted DEA measure, a popular tool for efficiency assessment. Furthermore, to provide a longitudinal 
perspective on airlines' efficiency in the two regions, we employed a dynamic DEA model. The dynamic DEA 
model could incorporate the resource flow between periods into the efficiency judgment, offering an overview 
of efficiency levels of decision–making units (DMUs) in the periods (Tone and Tsutsui, 2010). The dynamic 
DEA model has been successfully applied in evaluating airlines' efficiency in numerous studies (for instance, 
Omrani and Soltanzadeh, 2016; Yu et al., 2017; Cui et al., 2018). Besides, by using the data of the period 2014 
– 2016 of 7 European airlines and 9 US airlines, we updated the overall picture of efficiency levels of the airlines 
in the two regions. 

The paper is structured as follows: Section 2 provides the related literature; Section 3 demonstrates the adopted 
model for efficiency analysis; Section 4 presents the selection of variables and reports descriptive statistics of 
selected variables; Section 5 presents and discusses the empirical results; Finally, section 6 summarizes and 
concludes the major findings. 

Literature Review 
Europe and the U.S have presented the most mature markets in the global airline industry. In the past, there 
have been several studies on the efficiency of airlines of the two regions. For instance, Morrell and Taneja 
(1979) used ordinary least squares estimation procedure to gauge the efficiency of fourteen U.S and fourteen 
European airlines in 1975. The study's major findings indicated that the efficiency enhancement could be 
achieved through more liberty in the air traffic movements, the increase in frequency. The differences in U.S 
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and European airlines' efficiency levels could be driven by the differences in service, demand patterns, and 
route characteristics. 

Good et al. (1993) employed Cobb-Douglas single output technology to assess the efficiency of the four largest 
European air carriers and their eight American counterparts over the period 1976 – 1986. The results of the 
study suggested that airlines in the US appeared to be more efficient compared to their European counterparts 
due to the greater liberalization. Also, the potential efficiency enhancement could be obtained by cutting the 
input resources while the outputs could be fixed at the produced levels.  

Good et al. (1995) extended their previous study using both the parametric approach - Cobb-Douglas single 
output technology and non-parametric approach – data envelopment analysis (DEA) for their efficiency 
evaluation. The period 1976-1986 for the analysis was the time that the aviation industry in the US was 
significantly deregulated while the aviation market in Europe remained protected. The study found that the 
European airlines were less efficient than US airlines 15-20% on average. Considering resource consumption, 
airlines in Europe would have saved approximately $4 billion per year. Additionally, the authors specified the 
limitation of a parametric approach in providing upward biases in allocative efficiency estimations.  

Assaf and Josiassen (2012) adopted a parametric approach - Bayesian distance frontier model to measure and 
compare the efficiency and productivity of 17 European and 13 US air carriers during the period 2001 – 2008. 
By imposing regularity conditions on the distance frontier model, the authors found that the European airlines 
were generally more efficient than the US airlines and displayed better productivity growth over the period. The 
low-cost carriers in both regions appeared to be more efficient than the full-service carriers. 

In general, the existing studies on the efficiency of European and U.S airlines employed parametric approaches. 
As addressed in previous studies (Lampe and Hilgers, 2015), the major limitation of parametric approach is due 
to its presumption of relationships between inputs and outputs. Furthermore, it can be seen that most of the 
previous studies focused on the efficiency change/ productivity change over the periods; however, they ignored 
the linkage between the periods. The productions between periods are interrelated. According to Tone and 
Tsutsui (2011, 2014), such relationships can be demonstrated by carry-over activities/ products. Specifically, 
the products resulted from the production of a period join the production of a subsequent period. Such 
transitions of resources between periods involve in a dynamic production structure.  

Several studies have used the dynamic production structure to investigate airline's efficiency. For instance, 
Omrani and Soltanzadeh (2016) used dynamic network DEA to consider both carry-over products and the 
internal structure of the operation of eight Iranian airlines during the period 2010 – 2012. In their study, the 
structure of Iranian airlines was assumed to contain two stages, namely production and consumption, and the 
number of seats of the fleet was perceived as carry-over products. The study's major findings indicated that the 
efficiency levels of Iranian airlines tend to be lower in the production stage. 

Yu et al. (2017) also used dynamic network DEA to provide another perspective on airline operation's internal 
structure and the carry-over activities between periods. In specific terms, the dynamic production of 30 global 
airlines over the period 2009 – 2012 was decomposed into two stages, namely production and service; the 
number of self-owned aircraft and the number of waypoints were regarded as the carry-over products. The 
study reported several important findings as follows: (1) the weight/ the importance assigned to each stage 
significantly impacted the over efficiency estimations; (2) the overall efficiency of the evaluated airline shown a 
declining trend over the period; (3) the participation in airline alliances, the total assets, and the GDP affected 
the efficiency of airlines.  
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Cui et al. (2018) employed dynamic DEA to exploit the pollution abatement cost of the 18 global airlines during 
the period 2008 – 2014. The study denoted the capital stock as the carry-over product over the periods. The 
major findings of the study include (1) Delta airline demonstrated the largest pollution abatement cost; (2) the 
pollution abatement cost of most airlines declined over time; (3) the financial crisis in 2008 and the deployment 
of biofuel aircraft impacted on the changes in pollution abatement cost.  

Considering the superiority of DEA in incorporating the dynamic effect in assessing efficiency, the current 
study applies dynamic DEA. Thus, the current study derives a perspective that is different from the existing 
studies on European and US airlines. The following section explains our applied model. 

Methodology 
We evaluate efficiency of N airlines – DMUs over T periods. In each period  1,...,t t T , each DMU 

( 1,..., )j j N consumes M common inputs         1 ,..., ,...,t t t t M
m Mx x x  x and the P common carry-over 

products which are resulted from the previous period’s production         1, 1, 1, 1,

1 ,..., ,...,t t t t t t t t P
p Pc c c   

 c to 

produce common S outputs         1 ,..., ,...,t t t t R
r Ry y y  y and P common carry-over products 

        , 1 , 1 , 1 , 1

1 ,..., ,...,t t t t t t t t P
p Pc c c   

 c which will join the production of the next period  1t  . The 

production of a DMU  o o ox , y ,c  is sketched in Figure 1. 

Figure- 1. Dynamic structure. 

Following Tone and Tsutsui (2010), the carry-over product can be classified into four types, namely good, bad, 
free, and fixed. The meaning and the constraint for each type are different. Specifically, the good carry-over 
products are treated as desirable outputs, the bad ones are treated as inputs, the free ones are treated to freely 
adjusted and supposed to be under the control of DMU, the fixed ones are set fixed at the observed value, and 
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supposed to be out of control of DMU. For the details of the constraint representing each type of carry-over 
product, we refer the readers to Tone and Tsutsui (2010).  

In our study, the carry-over products are not controlled by the airlines, and thus, the fixed type is employed.   

Accordingly, the production technology under variable returns to scale (VRS) assumption can be expressed as: 
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To seek the simultaneous maximum potential input excesses and output shortfalls, the non-oriented dynamic 
slack-based measure (DSBM) model is adopted for assessing efficiency of US airlines. The dynamic efficiency 

of the evaluated DMU  o o ox , y ,c can be estimated by solving the following mathematical problem: 
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Let us denote the optimal solution of the model (4) with asterisk, the optimal solution to (3) can be defined as:  
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The efficiency of DMU  o o ox , y ,c in period ( 1,..., )t t T can be estimated as follows: 
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The dynamic efficiency of DMU  o o ox , y ,c over the T period can be determined as: 
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Data and variables selection  
In this study, we considered 9 US airlines (Alaska, Allegiant, Delta, Hawaiian, JetBlue, Skywest, Southwest, 
Spirit, and United Airlines) and 7 European airlines (Aegean, British Airways, easyJet, Lufthansa, Norwegian, 
Ryanair, and Wizz Air) over the period 2014 – 2016. The selected airlines are among the largest airlines operating 
in Europe and the US, thus representing the two regions' aviation industry. Besides, their parent companies are 
publicly-traded, which makes their data more transparent. 

The selection of inputs, outputs, and carry-over products was made based on the availability of data and the 
existing literature. Regarding input variables, three inputs were chosen, namely full-time equivalent employees, 
fuel consumption, and available seat miles (ASMs). The variable of labor has been commonly used as input in 
efficiency evaluation in the airline industry (Assaf and Josiassen, 2012; Merkert and Williams, 2013; Yu et al., 
2016; Chang and Yu, 2014; Merkert and Pearson, 2015; Saranga and Nagpal, 2016; Cao et al., 2015; Arjomandi 
et al., 2018; Barros and Wanke, 2015; Kottas and Madas, 2018). Fuel presents one of the most critical materials 
for an airline operation. The selection of this variable is consistent with prior studies (Tsionas et al., 2017; Cao 
et al., 2015; Gramani, 2012; Chow, 2010; Yu et al., 2016; Cui and Li, 2017). Besides labor and material inputs, 
capital input is another critical component for airline operations. Following Merkert and Pearson (2015), Yu et 
al. (2016), Saranga and Nagpal (2016), Barros and Couto (2013), ASM was treated as capital input. Regarding 
the output variable, revenue-passenger miles (RPMs) were chosen, representing the passenger traffic volume 
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handled by an airline. RPM has been widely accepted as a major output in efficiency evaluation of airlines in 
prior studies (Merkert and Pearson, 2015; Cui and Li, 2017; Kottas and Madas, 2018, Chang and Yu, 2014; Yu 
et al., 2017).  

Table 1: Descriptive statistics of the selected variables.1 
Variables Minimum Maximum Mean Std. dev. 
2013     
Carry-over product     
Shareholder’s equity (million dollars) 99.4 12,772.0 3,047.3 3,359.8 
2014     
Inputs     
Number of employees 1,650 79,829 21,920 26,154 
Consumed fuel (million gallons) 52.7 3,265.6 1,051.3 1,110.5 
ASM (million seat-miles) 8,682.0 211,954.2 83,516.0 76,817.8 
Output     
RPM (million passenger-miles) 1,632.5 177,553.1 68,692.6 64,391.2 
Carry-over product     
Shareholder’s equity (million dollars) 221.2 9,518.0 2,626.8 2626.0 
2015     
Inputs     
Number of employees 2,040.0 78,649.0 22,141.3 26,304.7 
Consumed fuel (million gallons) 55.3 3,388.9 1,004.9 1,100.6 
ASM (million seat-miles) 10,223.7 218,138.2 87,013.9 76,978.4 
Output     
RPM (million passenger-miles) 1,897.1 185,840.9 72429.6 65,258.3 
Carry-over product     
Shareholder’s equity (million dollars) 256.2 11707.2 3,528.7 3,517.9 
2016     
Inputs     
Number of employees 2,093 81,002 22,940 26,793 
Consumed fuel (million gallons) 71.0 3,412.6 1,004.4 1,088.9 
ASM (million seat-miles) 11,925.2 223,281.4 91,480.2 78,090.6 
Output     
RPM (million passenger-miles) 1,713.8 189,706.8 76,477.6 66,212.4 
Carry-over product     
Shareholder’s equity (million dollars) 281.9 13,085.7 3,877.4 3,738.9 

Note: The value of shareholder’s equity is adjusted for inflation. 

Considering the carry-product which connects the two consecutive periods, we used the shareholder‘s equity. 
The shareholder’s equity of the previous period is treated as an input for the subsequent period. After joining 

 

1 Since the study focuses on the passenger operations, the inputs in our study such as the number of employees and the fuel 
consumption of combination carriers are supposed to be reported for the passenger operation only. For the reason that there is 

no such information presented in the reports, like the previous studies on efficiency analysis of airlines, the current study uses 
the total number of employees and the fuel consumption which might cover the cargo operation. 
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the production of a period, the amount of shareholder’s equity is changed as a business outcome, thus, it can 
be treated as output. Our selection is in line with prior studies (Alperovych et al., 2013; Lu et al., 2014; Hung et 
al., 2014).  

The data was collected from the annual reports of airline companies. Table 1 reports the descriptive statistics 
of the data. 

Empirical results and discussion  
The dynamic efficiency of Europe and the US was estimated using the model (4) with an assumption of equal 
weight assigned to each period. The dynamic efficiency estimations are reported in Table 2. 

Table 2: Dynamic efficiency of European and US airlines over the period (2014 – 2016). 
Airline 2014 2015 2016 Overall 

2014 – 2016 
US     
Alaska 1.000 1.000 1.000 1.000 
Allegiant 1.000 1.000 1.000 1.000 
Delta 1.000 1.000 1.000 1.000 
Hawaiian 0.611 0.612 1.000 0.741 
JetBlue 1.000 1.000 1.000 1.000 
SkyWest 1.000 1.000 1.000 1.000 
Southwest 1.000 1.000 1.000 1.000 
Spirit 1.000 1.000 1.000 1.000 
United Airlines 1.000 1.000 1.000 1.000 
     
European     
Aegean  1.000 1.000 1.000 1.000 
British Airways 1.000 1.000 1.000 1.000 
EasyJet 1.000 1.000 1.000 1.000 
Lufthansa 1.000 1.000 1.000 1.000 
Norwegian 1.000 1.000 1.000 1.000 
Ryanair 1.000 1.000 1.000 1.000 
Wizz Air 1.000 1.000 1.000 1.000 
     
Mean 0.976 0.976 1.000 0.984 
Min 0.611 0.612 1.000 0.741 
Max 1.000 1.000 1.000 1.000 
Std.dv 0.097 0.097 0.000 0.037 

As shown in the overall efficiency of airlines (column 5) in Table 2, all evaluated airlines in Europe and the US 
were efficient during the period (2014 – 2016), except for Hawaiian airline. The airlines which are publicly 
traded tend to be efficient. With the updated data, we found that the airlines in the US and Europe have now 
been more comparable in terms of efficiency level. It seems that the significant liberalization of the aviation 
market in Europe has helped the airlines in this region to catch up with the airlines in the US. 
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Furthermore, the adoption of dynamic DEA provides us a longitudinal perspective on airlines' efficiency 
throughout the analyzed period. Specifically, except for Hawaiian airline, all the evaluated airlines are deemed 
efficient during (2014 – 2016). This suggests that the stable and efficient operation of airlines over the period.  

In contrast to other airlines, Hawaiian airline seems to be the least efficient one. Specifically, in 2014, and 2015 
the airline attains efficiency levels of 61.1% and 61.2%, respectively. The year 2016 displays a remarkable 
improvement in Hawaiian airline efficiency with an efficiency score of unity. Thanks to the substantial progress 
made in 2016, the airline's overall efficiency level during 2014 – 2016 reaches 74.1%. To specify the wastes in 
input consumption and deficits in the Hawaiian airline's output production, we investigated the input and 
output slacks of the airlines. The information is recorded in Table 3. 

As shown in Table 3, Hawaiian's inefficiency in 2014 is caused by the overuse of 2,373 employees, 45.47 million 
gallons of fuel, and the shortfall of 989 million revenue passenger miles. Meanwhile, in 2015, the airline has 
shown the overuse of 2,213 employees, 54.88, and the deficit of 1,080 million revenue passenger miles. In 2016, 
Hawaiian airline displayed an excellent deployment of resources and a reasonable traffic volume; thus, no slacks 
are indicated for this year. 

Table 3: Input excesses and output shortfalls of European and US airlines over the period (2014 – 2016). 
Airline 2014  2015  2016 

 (1) (2) (3) (4)  (1) (2) (3) (4)  (1) (2) (3) (4) 

US               
Alaska 0 0 0 0  0 0 0 0  0 0 0 0 
Allegiant 0 0 0 0  0 0 0 0  0 0 0 0 
Delta 0 0 0 0  0 0 0 0  0 0 0 0 
Hawaiian - 2,373 - 45.47 0 + 989  - 2,213 -54.88 0 +1,080  0 0 0 0 
JetBlue 0 0 0 0  0 0 0 0  0 0 0 0 
SkyWest 0 0 0 0  0 0 0 0  0 0 0 0 
Southwest 0 0 0 0  0 0 0 0  0 0 0 0 
Spirit 0 0 0 0  0 0 0 0  0 0 0 0 
United Airlines 0 0 0 0  0 0 0 0  0 0 0 0 
               
European               
Aegean  0 0 0 0  0 0 0 0  0 0 0 0 
British Airways 0 0 0 0  0 0 0 0  0 0 0 0 
easyJet 0 0 0 0  0 0 0 0  0 0 0 0 
Lufthansa 0 0 0 0  0 0 0 0  0 0 0 0 
Norwegian 0 0 0 0  0 0 0 0  0 0 0 0 
Ryanair 0 0 0 0  0 0 0 0  0 0 0 0 
Wizz Air 0 0 0 0  0 0 0 0  0 0 0 0 

Note: (1): Number of employees 
          (2): Consumed fuel 
          (3): Available seat-mile 
          (4): Revenue passenger-mile  
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Conclusion  
The study reinvestigates the efficiency of airlines in Europe and the US over the period 2014 – 2016. Notably, 
this is the first time the transitions of resources between periods have been taken into account. Using the 
dynamic DEA models, the study offers a longitudinal perspective on the efficiency of publicly traded airlines 
in Europe and the US. Furthermore, the employment of the airlines' updated data has refreshed the overall 
picture of airline performance in the two regions. 

The study's empirical results suggest that most publicly traded airlines in Europe and the US are efficient. 
Among 7 European airlines and 9 US airlines, only Hawaiian airline is inefficient with an overall efficiency level 
of 74.1 % over the period (2014 – 2016). Other airlines demonstrate extraordinary performance and maintain 
it over the period. The inefficiency of Hawaiian airline is majorly contributed by the overuse of the number of 
employees and consumed fuel and the traffic volume deficit in 2014 and 2015. 

Regarding the study's limitation, it can be argued that our study has not dealt with the internal structure of the 
airline operation. The lack of data drives this limitation as the internal structure typically requires a greater 
number of input, output, and intermediate product variables. Thus, in the near future, we intend to extend our 
current study considering the internal structure of airline operation. Such an approach would provide more 
information on the underlying sources of inefficiency which exist in airline operation. 

Additionally, the airlines included in our study adopted different business models such as full-service, low-cost, 
ultra-low-cost models. Due to the limited number of DMUs in the study, we could not test how the different 
business models affect the efficiency levels of airlines. Besides, some other concerns about the impacts of 
aircraft acquisition, network expansion, the economic environment should be addressed in future studies on 
the condition that the data are available. 
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